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Abstract - In this paper the Haar-wavelet 
multiresolution time-domain (MRTD) scheme is modified in 
a way that enables the modeling of arbitrary positioned 
metals within a cell, leading to the development of composite 
cells that are useful for the simulation of highly detailed 
structures. The application of this technique to one such 
structure, an electromagnetic band-gap (EBG) resonator, is 
presented. The technique demonstrates a time-domain 
approach in which MRTD can be used to drastically reduce 
the number of cells needed to simulate a complex device 
while taking full advantage of the technique’s inherent time- 
and space-adaptive gridding. 

I. INTRODUCTION 

Advances in device processing are enabling the 
development of increasingly compact microwave circuits. 
These circuits incorporate a high degree of functionality 
through the combination of many microwave components 
in close proximity. These advanced devices often utilize 
geometries with high aspect ratios, small feature size, and 
moving parts. These characteristics, which are necessary 
to the operation of these devices, often lead to difficulties 
in predicting performance. 

The simulation of these complex devices requires the 
use of extremely small elements or cells, which can tax 
many simulation tools beyond their limits. This has led to 
the use of a combination of methods, such as full-wave 
simulation and microwave circuit simulation, or, if higher 
accuracy is required, the use of a parallel full-wave 
simulator on specialized hardware. In order to simulate 
these complex devices in less time, methods which are 
more efficient without reducing accuracy are necessary. 

The multiresolution time-domain (MRTD) [l] technique 
uses a wavelet disc&z&ion of Maxwell’s equations to 
provide a time- and space- adaptive electromagnetic 
modeling scheme. The advantage of this method is that it 
can use much larger cells than similar full-wave time 
domain methods, such as finite-difference time-domain 
(FDTD) [2]. The number of basis functions used in each 
cell can be varied as a function of space and time. In this 
way. grids of complex structures can use high resolution 
cells in areas of large field variation, and lower resolution 
cells elsewhere. One such complex sbxcture is an 

electromagnetic band-gap (EBG) resonator, such as that 
presented in Fig. 1 [3]. 

The EBG resonator shown here is designed to be 
compatible with modem printed circuit board 
technologies. A similar design can be used in any modem 
multilayer process, such as ceramic and organic substrates 
co-only used in building system-on-package modules. 
The structure uses a resonating chamber built using an 
arrangement of vias instead of metal walls. The via layout 
in this shutore leads to complex grids in both the FDTD 
and MRTD techniques. A method that allows metals to 
intersect a cell in the MRTD grid would enable the use of 
larger MRTD cells, and thus increase the efficiency of the 
simulation. 

In this paper a method is presented which enables the 
modeling of arbitrarily positioned conductors that 
intersect the MRTD grid. Combined with a method for 
modeling dielectric discontinuities within a cell 141, this 
technique can be used to create composite cells; cells that 
contain several conductor and dielectric interfaces. Both 
the theoretical formulation of the method and a 
demonstration of the application of the method to an EBG 
st~ctore are presented. Another application of this 
technique is the modeling of a metal at any point in the 
grid. This is useful for a moving metal, as the grid does 
not have to be completely reformulated for each position 
of the metal. Instead, the MRTD resolution can be varied 
to allow the metal to be located wherever necessary. One 
important application of this technique is to RF-MEMS 
devices. 

Fig. 1. EBG resonator, micro&p feed, cavity constructed 
using vias 
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II. h4RTD 

The multiresolution time-domain technique draws its 
name from the application of multiresolution principles to 
Maxwell’s equations. In the application of the method, 
the electric and magnetic fields are expanded into scaling 
and wavelet functions and then inserted into Maxwell’s 
equations. The method of moments is then applied to 
these equations, leading to a time-marching scheme much 
like the finite-difference time-domain technique. The 
advantage of this technique over other methods is that 
wavelets can be added or subtracted during to the 
simulation at any point in the grid. In this way the grid 
can react to both complex geometry and rapid changes in 
the field as it propagates through the grid. 

The choice of wavelet basis functions determines the 
characteristics of the MRTD scheme. In order to create an 
efficient scheme, Wavelet systems are usually chosen to 
create sparse discretizations of the modeled equations. In 
this analysis Haar wavelets (Figs. 2 and 3) will be used in 
space, Haar scaling functions only will be used in time 
[4]. Haa wavelets do not lead to as efficient of a scheme 
as other possible choices, however their finite domain 
nature enables the modeling of hard boundaries naturally, 
as well as limits the interaction of each cell to its nearest 
neighbors. 

Fig. 2. Haar scaling function, p 

Fig. 3. Haar wavelets, f,Y’,r-0,1,2 

In the following sections a method is presented which 
allows for the modeling of metals that are positioned 
within a cell. For simplicity, as well as space 
requirements, the derivations presented in this paper are in 
one dimension. The equations modeled are: 

When expanded into scaling and wavelet functions, the 
following expressions for E and H are found: 

In the above equations, v,,,(x) = $9(x/Ax-m) and 

Iv’ = 2”2 ~(2’ (x/Ax-m) - p) , represent the 
sc$kpd and translated versions of the scaling and wavelet 
functions. The positions of the scaling and wavelet 
functions are referred to by the parameter m for the E field 
and m’ for the H field. It has been shown [5,6] that the 
relationship between m and m’: 

leads to a doubling of resolution for each increased level 
of wavelet resolution. 

When (3) and (4) are inserted into (1) and (2), and the 
method of moments is applied, individual update 
equations for each 9 and w component are derived. The 
update equations for the E and H scaling functions are: 

1 

(6) 

“+, E;+ =” E;# + 

(7) 
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III. MRTD INTRACELL METAL MODELING 

When inserting a PEC into an FDTD or MRTD grid, the 
boundary condition that must be enforced is that electric 
fields tangential to the PEC must be set to zero. This is a 
natural condition in FDTD, as metals can be placed along 
cells that coincide with the electric field locations in the 
Yee cell. This condition can be exactly duplicated in Haar 
MRTD by placing metals along the electric field locations 
in the modified Yee cell that represents the MRTD grid. 
If a metal only covers a portion of the cell, only the 
scaling and wavelet functions that intersect the metal need 
to be zeroed. By increasing the resolution, a metal 
intersecting any part of the grid can be represented. An 
example of this is presented in Fig. 4. In this case the 
metal splits a cell in two. The scaling function, Olh 
resolution wavelet, and the fust 1” and 2”d resolution 
wavelets intersect the PEC. The coefficients for these 
wavelets are zeroed. Higher resolution wavelets can be 
updated as in a normal MRTD grid. In this manner, the 
metal occupies the domain of only one of the highest 
resolution wavelets. The metal can be placed arbitrarily 
by selecting an appropriate wavelet resolution. If the 
position of the metal changes during simulation, the 
resolution of the cells that intersect the metal can be 
modified until a wavelet boundary exists on the metal 
(within an acceptable tolerance), and the lower resolution 
wavelets can be zeroed as before. 

r=O 
r=l 
r=2 

Fig. 4. PEC intersecting MRTD cell 

Fig. 5 shows the results of a 1D Haar MRTD simulator 
with an intracell metal. This simulation uses an r,, of 1. 
The three graphs represent the electric field at different 
times. The first plot shows an initial time when pulses are 
traveling towards a PEC boundary. The second plot 
shows a later time when the pulse on the right is reflecting 
from the PEC. In the third plot, the right hand pulse is 
traveling in the opposite of its initial direction, while the 
left pulse is finishing reflecting from the PEC. The 
exploded view of the grid shows that half of the cell that 
contains the PEC has its coefficients set to zero (because 

nnax =l) while the 1=1 wavelet function on the right is 
updated as normal. 

I 

PEC 

Fig. 5. Time domain plot of ID-H&w MRTD simulation with 
intracell PEC 

IV. EBG RESONATOR 

EBG components use periodic arrangements of metals 
and dielectrics to create structures that only allow specific 
modes to propagate. One such structure is the EBG 
resonator in Fig. 1 [3]. This structure is similar to a solid 
wall resonator, however, it is compatible with multilayer 
processing techniques. The arrays of vias act as a metallic 
wall and thus create a resonating chamber. The feed and 
output microstrip lines are magnetically coupled to the 
cavity through a slot. 

The S-parameters of this structox are presented in 
Fig. 6. This plot shows measured results, results from 
Ansoft’s High Frequency Structure Simulator, and results 
from a parallel FDTD code. It can be seen that the FDTD 
results agree very well with the measured results, with the 
resonant frequency being almost exactly predicted. The 
only large discrepancy is the high frequency roll off, 
which is believed to be caused by fabrication error. 

Fig. 6. Measured and simulated r&Its of EBG resonator 
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In order to accurately model the resonator in FDTD, a 
very high resolution grid was required. Each via was 
modeled with four cells in each dimension. In addition, 
the area between the vias also required 4 cells. To match 
the grid to the physical structure, variable griddiig [7] was 
used. The total number of cells in the grid was 2.56 
million. In addition, the resonator required in excess of 
250,000 time steps for the field decrease sufficiently for 
confidence in the results. On a 18 processor parallel 
Athlon MP 1800 cluster, the simulation took 
approximately 10 hours. 

The FDTD modeling of this structure demonstrates the 
need for a high degree of accuracy and efficiency in a 
simulator for these devices. In the application of MRTD 
to the above structure, it is possible to reduce the number 
of cells in each direction by a factor of at least 4. This 
decreases the number of cells in the simulation at least 64 
times. In the area of the vias, this is countered by the need 
for many wavelet resolution levels, however, it enables 
the use of low resolution cells away from the vias. 

Using the subcell method presented in this paper, it is 
possible to further reduce the number of cells needed to 
simulate the structure. Due to the ability to place a metal 
within a cell, multiple vias can be modeled in a single 
MRTD cell. This is presented in Fig. 7. The MRTD cell 
represents several equivalent cells, each with its own 
co&cients. In this figure, the vias are represented by the 
shaded area. Because the vias are represented in the 
simulator as PECs, the coefficients of the scaling and 
wavelet functions intersecting the vias are set to zero. The 
coefficients in the remainder of the cell are updated as in a 
standard MRTD scheme. This allows significantly larger 
structures to be modeled, because while the resolution in 
the cells containing vias must be high, it can be lowered 
when the excitation is away from the via area, as the 
higher order wavelets can bejgnored. 

! 
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Fig. 7. 2D view of MRTD cell intersecting via h&s 

v. CONCLUSION 

A method which enables the modeling of metals that 
intersect a multiresolution time-domain grid has been 
presented. The technique has advantages in that it enables 
the computationally efficient modeling of complex static 
stmchxes as well as allows moving structures to be 
modeled in a natural way. This is done through the use of 
a composite cell, which can have several intracell 
dielectric and conductor discontinuities. The benefit of 
this technique was shown through the example of an EBG 
resonator. This structure exemplifies many real structures 
that exist in modern microwave circuits that require large 
computational resources, or the use of approximation 
techniques, in their simulation. Using this method the 
required computational resources can be greatly reduced. 
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